11,172 research outputs found

    Prediction of thermal radiation from a rocket's exhaust plume

    Get PDF
    Data from absorption coefficients and fine-structure parameters measured for water vapor have been incorporated in an analytic program useful in evaluating heating by radiation from the exhaust plume of a large rocket

    Prediction of total emissivity of nitrogen- broadened and self-broadened hot water vapor

    Get PDF
    Total emissivity predicted for nitrogen-broadened and self-broadened hot water vapo

    Study of air pollutant detection by remote sensors

    Get PDF
    Air pollution detection using satellite observatio

    Determination of aerosol content in the atmosphere from ERTS-1 data

    Get PDF
    The author has identified the following significant results. Significant results, relating the radiance over water surfaces to the atmospheric aerosol content, have been obtained. The results indicate that the MSS channels 4, 5, and 6 centered at 0.55, 0.65, and 0.75 microns have comparable sensitivity, and that the aerosol content can be determined within + or - 10% with the assumed measurement errors of the MSS. The fourth channel, MSS 7, is not useful for aerosol determination due to the water radiance values from this channel generally being less than the instrument noise. The accuracy of the aerosol content measurement could be increased by using an instrument specifically designed for this purpose. This radiance-aerosol content relationship can possibly provide a basis for monitoring the atmospheric aerosol content on a global basis, allowing a base-line value of aerosols to be established. The contrast-aerosol content investigation shows useful linear relationships in MSS channels 4 and 5, allowing the aerosol content to be determined within + or - 10%. MSS 7 is not useful due to the low accuracy in the water radiance, and MSS 6 is found to be too insensitive. These results rely on several assumptions due to the lack of ground truth data, but do serve to indicate which channels are most useful

    Convective line shifts for the Gaia RVS from the CIFIST 3D model atmosphere grid

    Get PDF
    To derive space velocities of stars along the line of sight from wavelength shifts in stellar spectra requires accounting for a number of second-order effects. For most stars, gravitational redshifts, convective blueshifts, and transverse stellar motion are the dominant contributors. We provide theoretical corrections for the net velocity shifts due to convection expected for the measurements from the Gaia Radial Velocity Spectrometer (RVS). We used a set of three-dimensional time-dependent simulations of stellar surface convection computed with CO5BOLD to calculate spectra of late-type stars in the Gaia RVS range and to infer the net velocity offset that convective motions will induce in radial velocities derived by cross-correlation. The net velocity shifts derived by cross-correlation depend both on the wavelength range and spectral resolution of the observations. Convective shifts for Gaia RVS observations are less than 0.1 km/s for late-K-type stars, and they increase with stellar mass, reaching about 0.3 km/s or more for early F-type dwarfs. This tendency is the result of an increase with effective temperature in both temperature and velocity fluctuations in the line-forming region. Our simulations also indicate that the net RVS convective shifts can be positive (i.e. redshifts) in some cases. Overall, the blueshifts weaken slightly with increasing surface gravity, and are enhanced at low metallicity. Gravitational redshifts amount up to 0.7 km/s and dominate convective blueshifts for dwarfs, but become much weaker for giants.Comment: 13 pages, to appear in A&A; model fluxes available from ftp://leda.as.utexas.edu/pub/callende/Gaia3D and soon from CD

    Intrinsically Legal-For-Trade Objects by Digital Signatures

    Full text link
    The established techniques for legal-for-trade registration of weight values meet the legal requirements, but in praxis they show serious disadvantages. We report on the first implementation of intrinsically legal-for-trade objects, namely weight values signed by the scale, that is accepted by the approval authority. The strict requirements from both the approval- and the verification-authority as well as the limitations due to the hardware of the scale were a special challenge. The presented solution fulfills all legal requirements and eliminates the existing practical disadvantages.Comment: 4 pages, 0 figure

    Twisting type-N vacuum fields with a group H2H_2

    Full text link
    We derive the equations corresponding to twisting type-N vacuum gravitational fields with one Killing vector and one homothetic Killing vector by using the same approach as that developed by one of us in order to treat the case with two non-commuting Killing vectors. We study the case when the homothetic parameter Ï•\phi takes the value -1, which is shown to admit a reduction to a third-order real ordinary differential equation for this problem, similar to that previously obtained by one of us when two Killing vectors are present.Comment: LaTeX, 11 pages. To be published in Classical and Quantum Gravit

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Full text link
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Kondo screening in a magnetically frustrated nanostructure: Exact results on a stable, non-Fermi-liquid phase

    Full text link
    Triangular symmetry stabilizes a novel non-Fermi-liquid phase in the three-impurity Kondo model with frustrating antiferromagnetic interactions between half-integer impurity spins. The phase arises without fine-tuning of couplings, and is stable against magnetic fields and particle-hole symmetry breaking. We find a conformal field theory describing this phase, verify it using the numerical renormalization group, and extract various exact, universal low-energy properties. Signatures predicted in electrical transport may be testable in scanning tunneling microscopy or quantum-dot experiments.Comment: 4 pages, published version (shortened, minor corrections

    Temperature dependence of the diffuse scattering fine structure in equiatomic CuAu

    Get PDF
    The temperature dependence of the diffuse scattering fine structure from disordered equiatomic CuAu was studied using {\it in situ} x-ray scattering. In contrast to Cu3_3Au the diffuse peak splitting in CuAu was found to be relatively insensitive to temperature. Consequently, no evidence for a divergence of the antiphase length-scale at the transition temperature was found. At all temperatures studied the peak splitting is smaller than the value corresponding to the CuAuII modulated phase. An extended Ginzburg-Landau approach is used to explain the temperature dependence of the diffuse peak profiles in the ordering and modulation directions. The estimated mean-field instability point is considerably lower than is the case for Cu3_3Au.Comment: 4 pages, 5 figure
    • …
    corecore